Relation Between Extended Stirling Numbers and q-B-splines

نویسندگان

چکیده

Stirling numbers of second kind S(n,k) denotes the number ways partitioning a set n elements into k nonempty sets. There are many types stirling which studied up to now. In this study, we use extended defined for arbitrary reals. First, define relation between and q-B-splines by using property that divided differences have representation with q-B-splines. addition, derive identities on q-integral Furthermore, give q-generating functions q-difference equation function.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Negative q-Stirling numbers

The notion of the negative q-binomial was recently introduced by Fu, Reiner, Stanton and Thiem. Mirroring the negative q-binomial, we show the classical q-Stirling numbers of the second kind can be expressed as a pair of statistics on a subset of restricted growth words. The resulting expressions are polynomials in q and 1 + q. We extend this enumerative result via a decomposition of the Stirli...

متن کامل

Carlitz q-Bernoulli Numbers and q-Stirling Numbers

a+ dpZp = {x ∈ X | x ≡ a (mod dp N )}, where a ∈ Z lies in 0 ≤ a < dp , see [1-21]. The p-adic absolute value in Cp is normalized so that |p|p = 1/p. When one talks of q-extension, q is variously considered as an indeterminate, a complex number q ∈ C or a p-adic number q ∈ Cp. If q ∈ Cp, then we assume |q − 1|p < p − 1 p−1 , so that q = exp(x log q) for |x|p ≤ 1. We use the notation [x]q = [x :...

متن کامل

Determinants involving q-Stirling numbers

Let S[i, j ] denote the q-Stirling numbers of the second kind. We show that the determinant of the matrix (S[s + i+ j, s + j ])0 i,j n is given by the product q( s+n+1 3 )−( 3) · [s]0 · [s+ 1]1 · · · [s+n]n. We give two proofs of this result, one bijective and one based upon factoring the matrix. We also prove an identity due to Cigler that expresses the Hankel determinant of q-exponential poly...

متن کامل

P-Partitioins and q-Stirling Numbers

New q-analogs of Stirling numbers of the second kind(and the first kined) are derived from a poset on [2k] using Stanley’s P -partition theory [?]. We also generalize to the poset on the set [rk].

متن کامل

q-Stirling numbers: A new view

We show the classical q-Stirling numbers of the second kind can be expressed more compactly as a pair of statistics on a subset of restricted growth words. The resulting expressions are polynomials in q and 1+q. We extend this enumerative result via a decomposition of a new poset Π(n, k) which we call the Stirling poset of the second kind. Its rank generating function is the q-Stirling number S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fen-mühendislik dergisi

سال: 2021

ISSN: ['1302-9304', '2547-958X']

DOI: https://doi.org/10.21205/deufmd.2021236824